EYEPOINT P10

Автоматическая система локализации неисправных электронных компонентов на печатных платах

Инструкция по эксплуатации

СОДЕРЖАНИЕ

Аннотация	5
1. Комплект поставки	6
2. Технические характеристики	7
3. Правила по безопасной работе	8
4. Описание частей прибора	9
5. Подключение	9
6. Сценарии работы с прибором	10
6.1. Настройка прибора	10
6.2. Измерение и запись эталонной платы	10
6.3. Выявление неисправных компонентов на тестируемой плате	11
7. Установка платы	11
8. Описание программного обеспечения EyePoint P10	13
8.1. Интерфейс программы	13
8.2. Управление	14
8.2.1. Управление мышью	14
8.2.2. Работа в режиме «Калибровка»	15
9. Настройка прибора	15
9.1. Окно настройки	15
9.1.1. Описание настроек вкладки «Общие настройки»	16
9.1.2. Вкладка «Выбор компонентов»	21

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ЕУЕРОІМТ РІО

9.1.3. Описание настроек вкладки «Настройки измерителя ВАХ» 22
9.1.4. Вкладка «Управление подсветкой» 23
9.1.5. Вкладка «Настройки камеры»26
10. Калибровка
10.1. Калибровка нового щупа 27
10.2. Полная калибровка 29
10.3. Быстрая калибровка 32
11. Сканирование
11.1. Выбор области
11.2. Проведение сканирования
11.3. Распознавание компонентов
11.3.1. Автоматический способ распознавания компонентов
11.3.2. Полуавтоматический способ распознавания компонентов 39
11.3.3. Ручное добавление элемента 42
11.4. Редактирование и удаление элемента эталонной платы 43
12. Снятие вольт-амперных характеристик платы
13. Выявление неисправных компонентов на тестируемой плате 47
13.1. Распознавание эталона
13.1.1. Автоматическое распознавание эталона
13.1.2. Ручной выбор эталона 48
13.2. Корректировка наложения эталона

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ЕУЕРОІМТ РІО

13.3. Тестирование платы
13.4. Замена некорректных ВАХ тестовой платы 54
13.5. Ручное тестирование55
14. Отчет о тестировании 56
14.1. Расположение отчетов
14.2. Структура папки отчета56
14.3. Внешний вид отчета эталона 58
14.4. Внешний вид отчета тестовой платы 59
15. Выключение
16. Полезная информация при работе с системой61
16.1. Как правильно расставлять точки для тестирования компонентов
16.2. Как лучше добавлять компоненты на эталонную плату
16.3. Подключение «общего» провода к измеряемой плате 64
16.4. Виды вольт-амперных характеристик (ВАХ) различных компонентов и их сочетаний
Для заметок
Для заметок70
Для заметок71

АННОТАЦИЯ

Данная инструкция по эксплуатации распространяется на автоматические системы локализации неисправных электронных компонентов на печатных платах, модель EyePoint P10, (далее – изделие, прибор, EyePoint P10).

Пожалуйста, внимательно читайте описание и соблюдайте все указания в блоках «Предупреждение».

Предупреждение

Во избежание поражения электрическим током перед началом работы с прибором внимательно прочитайте раздел «Правила по безопасной работе».

EyePoint P10 осуществляет поиск неисправностей путем сравнения сигнатур тестируемой цепи платы с заведомо исправной по методу аналогового сигнатурного анализа (ACA).

В основе EyePoint P10 лежит технология «летающий щуп», которая позволяет автоматизировать процесс проверки плат, и прецизионная механика, которая гарантирует точность попадания щупа во всем рабочем диапазоне.

Изделие предназначено для выполнения следующих задач:

- сканирование плат;
- поиска электронных компонентов на печатных платах;
- обнаружения отклонений от сигнатур эталонной платы;
- подготовка отчета в формате HTML.

1. КОМПЛЕКТ ПОСТАВКИ

При получении устройства проверьте наличие и целостность комплекта поставки:

N⁰	Описание	Кол-во
1	Упаковочная деревянная коробка на колесах,	1
	размер 98 х 68 х 61 см	T
2	Устройство EyePoint P10	1
3	Управляющий ПК, уже настроенный и готовый	1
	к работе с установкой	T
4	Монитор	1
5	Клавиатура и мышь	1
6	Кабель питания (для ПК, монитора, EyePoint P10)	3
7	Кабель USB для подключения EyePoint P10 к ПК	1
8	HDMI-кабель подключения монитора к ПК	1
9	Набор из 10 магнитных стоек	1
10	Набор из 6 запасных щупов: 5 стальных и 1 позо-	1
	лоченный	T
11	Инструмент для замены щупов	1
12	Калибровочная плата	1
13	Паспорт устройства	1
14	Инструкция по эксплуатации	1

В случае отсутствия или повреждения чего-либо из комплекта поставки, пожалуйста, немедленно свяжитесь с поставщиком.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

N⁰	Наименование параметра	Значение
1	Напряжения пробного сигнала	1.2, 3.3, 5, 12 B
2	Диапазон частот пробного сигнала	1, 10, 100 Гц, 1, 10, 100 кГц
3	Диапазон тока	25 мкА - 25 мА
4	Чувствительность по R	1 Ом - 10 МОм
5	Чувствительность по С	50 пФ - 6800 мкФ
6	Чувствительность по L	1 мкГн - 0.01 Гн
7		LQFP, SOIC, SMD, SOT,
′	поддерживаемые типы корпусов	DIP и тд.
8	Электропитание	~220 В, 300 Вт
9	Рабочая область	280 х 275 х 63 мм
10	Скорость построения карты тестирования	до 10 см²/мин
11	Скорость тестирования	до 100 точек/мин
12	Точность установки щупа	30 мкм
13	Время на смену платы	30 сек
14	Минимальное расстояние между	0.4
14	точками тестирования	U.4 MM
15	Максимальное количество точек тестирования	2500 шт.
16	Расположение выводов	произвольное
17	Управляющий ПК с комплектом ПО	входит в комплект
18	Габариты	604 х 543 х 473 мм
19	Вес	50 кг

3. ПРАВИЛА ПО БЕЗОПАСНОЙ РАБОТЕ

Во избежание поражения электрическим током или возможного повреждения прибора соблюдайте следующие правила:

- Перед использованием прибора необходимо ознакомиться с инструкцией по его эксплуатации.
- Осмотрите корпус прибора. Не используйте прибор, если на его корпусе имеются серьезные повреждения и/или отсутствуют детали.
- Прибор предназначен для использования в помещении.
- Не используйте и не храните прибор в условиях высокой температуры, влажности, в присутствии взрывчатых веществ или сильных магнитных полей.
- Выключайте прибор, если он не используется.
- Во избежание некорректной работы прибора не ремонтируйте его самостоятельно, обратитесь к производителю.
- Не вносите изменения в схему прибора, чтобы избежать его поломки или опасности для пользователя.
- Для очистки корпуса прибора следует использовать только мягкую ткань и неагрессивные моющие средства. Во избежание коррозии, повреждения прибора и несчастных случаев недопустимо использовать для очистки растворители и абразивные вещества.
- Во избежание травм, а также повреждения компонентов системы или платы в процессе работы, крышка установки должна быть закрыта.
- Перед началом работы прибора убедитесь, что посторонние предметы не препятствуют перемещению подвижных частей прибора.
- В ходе работы крышка EyePoint P10 должна быть закрыта.

4. ОПИСАНИЕ ЧАСТЕЙ ПРИБОРА

Рисунок 1. Описание частей прибора EyePoint P10.

5. ПОДКЛЮЧЕНИЕ

- 1. Подсоедините кабель питания к EyePoint P10.
- 2. Подключите прибор к компьютеру с помощью кабеля USB Туре В.
- 3. Включите питание EyePoint P10 с помощью кнопки, расположенной рядом с разъемом питания.
- 4. Включите управляющий ПК и запустите ярлык программы EyePoint P10 на рабочем столе (EyePoint PCB - для работы с печатными платами).

6. СЦЕНАРИИ РАБОТЫ С ПРИБОРОМ

В зависимости от задач, работу с прибором можно разделить на несколько сценариев:

- 1. Настройка прибора;
- 2. Измерение и запись сигнатур эталонной платы.
- Выявление неисправных компонентов на тестируемой плате (тестирование платы путём измерения сигнатур и сравнения с заранее записанным эталоном).

6.1. Настройка прибора

Проводится при первом подключении прибора, смене щупа или, если это необходимо, при смене платы.

Заключается в проведении следующих этапов:

- 1. Установка параметров системы;
- 2. Проведение калибровки щупа;
- 3. Проведение полной калибровки.

6.2. Измерение и запись эталонной платы

Позволяет получить файл платы с её изображением, координатами компонентов и точек тестирования с измеренными сигнатурами. При тестировании других плат того же типа данный файл будет использоваться в качестве эталонного.

Данная процедура предполагает выполнение шагов:

- 1. Установка платы;
- 2. Настройка прибора под плату;
- 3. Проведение быстрой калибровки;
- 4. Сканирование платы;

- 5. Распознавание компонентов;
- 6. Снятие сигнатур эталонной платы;
- 7. Получение отчета;
- 8. Сохранение эталона в файл.

6.3. Выявление неисправных компонентов на тестируемой плате

В процессе тестирования платы производится измерение сигнатур тестируемой платы и сравнение их с сигнатурами, записанными с эталонной платы. Различия сигнатур указывают на возможную неисправность компонентов платы и позволяют их локализовать.

Проводится в несколько шагов:

- 1. Установка платы;
- 2. Быстрая калибровка;
- 3. Сканирование платы;
- 4. Наложение эталона;
- 5. Тестирование платы;
- 6. Получение отчета.

7. УСТАНОВКА ПЛАТЫ

Для установки платы выполните следующие действия:

- 1. Убедитесь, что на плате нет компонентов выше 63 мм.
- Откройте крышку установки. Закрепите исследуемую плату с помощью магнитных стоек (идущих в комплекте) либо, при наличии, в специальном крепеже для платы в центре рабочей зоны параллельно направляющим. Убедитесь, что плата надежно закреплена, а ее поверхность параллельна рабочей поверхности устройства.

При необходимости зафиксируйте плату с помощью большего количества стоек или изготовьте дополнительную оснастку. Точное выравнивание не требуется, достаточно выставить плату «на глаз» (Рисунок 2).

- При помощи зажима «крокодил» подключите к общей линии платы (лучше всего к GND) проводник «общий» измерителя. На калибровочной плате цепь GND выведена на угловые металлизированные площадки.
- 4. Если на плате есть несколько изолированных друг от друга «земель» их нужно объединить между собой с помощью дополнительных соединительных проводов. При необходимости рекомендуется изготовить дополнительную оснастку для подключения к разъёмам на плате.
- 5. Убедитесь, что посторонние предметы не препятствуют перемещению подвижных частей прибора.
- 6. Закройте крышку установки.

Рисунок 2. Пример фиксации платы с помощью магнитных стоек.

Предупреждение

На направляющих прибора ничего не должно находиться, во избежание выхода его из строя!

8. ОПИСАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ЕУЕРОІNT Р10

Программное обеспечение предназначено для работы автоматизированной системы EyePoint P10 и позволяет выполнять описанные в главе 6 сценарии.

EyePoint P10 сохраняет результаты тестов в стандартном формате. Вместе с измеренными сигнатурами сохраняется изображение платы в высоком разрешении, координаты компонентов и точек тестирования, а также настройки измерителя. Эти данные могут быть использованы в последующих тестах (в том числе с использованием ручных приборов линейки EyePoint), а также для генерации html-отчётов.

Эталонные и тестовые платы сохраняются в аналогичных форматах.

Сохранённые файлы плат можно найти в директориях **test_pcb**, **sample_pcb**, которые расположены в корне папки с программой.

8.1. Интерфейс программы

Главное окно программы (Рисунок 3) состоит из:

- Главного меню;
- Вкладок «Калибровка», «Сканирование» и «Тестирование»;
- Рабочей зоны окна для проведения манипуляций с платой и отображения результатов ее сканирования;
- Экрана отображения вида с камеры в текущий момент;
- Информационного блока.

Рисунок 3. Главное окно ПО EyePoint P10.

При запуске программы не все вкладки доступны пользователю, они станут активными по мере выполнения шагов.

8.2. Управление

8.2.1. Управление мышью

В дальнейшем описании используются следующие названия основных режимов управления компьютерной мышью:

- Команда «Указать» клик левой кнопкой мыши;
- Режим «Рука» перемещение изображения с нажатой левой кнопкой мыши;
- Режим выделения «Область» перемещение с нажатой правой кнопкой мыши;
- Режим «Изменение масштаба» движение колёсика мышки (от себя – увеличить, на себя – уменьшить).

Рисунок 4. Управление мышью в ПО EyePoint P10.

8.2.2. Работа в режиме «Калибровка»

При открытии программы в рабочей зоне будет виден серый экран и область изображения под щупом. Для получения более полного изображения пощелкайте по рабочей зоне в разных местах с помощью команды «Указать». Камера будет следовать за щелчками и отображать полученные снимки. Режим нужен для грубого перемещения, поэтому изображения не склеиваются и не сшиваются, а также могут смазываться в процессе движения. Для удобства можно изменять масштаб рабочей зоны с помощью режима «Изменение масштаба».

9. НАСТРОЙКА ПРИБОРА

9.1. Окно настройки

В главном меню перейдите в «Файл» - «Настройки». Откроется окно настроек, состоящее из пяти вкладок «Общие настройки», «Выбор компонентов», «Настройка измерителя ВАХ», «Управление подсветкой», «Настройка камеры» (Рисунок 5).

💴 Настройки		? ×
Общие настройки Выбор компонентов	Настройки измерителя ВАХ Управление подсвети	кой Наст 🕩
Выбор камеры	0 ~	
Предварительный порог детектора	1.50	
Порог детектора	0.70 🔹	
Полуавтоматический множитель детектора	0.50 🔹	
Возврат в «домашнюю» позицию		
Допустимая ошибка калибровки, пикс/мм	1.40 🔹	
Расстояние от камеры до щупа по X, мм	-18.5312 ‡	
Расстояние от камеры до щупа по Y, мм	2.1595 🔹	
Глубина полуопускания щупа, мм	10.00 🔹	
Порог сравнения ВАХ	0.150 🔹	
Порог обнаружения ВАХ	0.350 \$	
Площадь точки в отчете, пикс	100 🗘	
Доведение щупа, мм	1.00 🔹	
Точки совпадения для выбранной платы	6 🔹	
Порог для выбора плат	0.56 🔹	
Порог сравнения плат	0.0400 🗘	
Режим многократного контактирования	\checkmark	
Кол-во попыток контактирования	5 🔹	
Размер области поиска, мм	0.08 🗧	
Определение динамических ВАХ		
Цвет прицела		
Настройки по умолчанию Применить С	хранить настройки в файл Открыть настройки из файл	а Отмена

Рисунок 5. Вкладка «Общие настройки» окна настройки ПО EyePoint P10.

9.1.1. Описание настроек вкладки «Общие настройки»

1. Выбор камеры.

Выбор камеры, используемой для сканирования платы. Если к ПК подключено несколько камер, проверьте, что в главном окне отображается картинка с камеры, расположенной рядом с щупом EyePoint P10. По умолчанию задано значение 0, при необходимости выберите другой номер камеры. После применения настроек убедитесь, что теперь в главном окне используется изображение с правильной камеры.

2. Предварительный порог детектора, порог детектора, полуавтоматический множитель детектора.

Данные параметры отвечают за качество распознавания электронных компонентов на изображении платы.

3. Возврат в «домашнюю» позицию.

Выбор этого пункта включает автоматический возврат щупа в сервисную позицию после завершения основных операций. Сервисная позиция – дальний левый угол рабочей зоны. Перевод в сервисную позицию занимает дополнительное время, но облегчает установку и извлечение печатных плат, а также делает эти операции более безопасными.

4. Допустимая ошибка калибровки, пикс/мм.

Пункт определяет допустимую ошибку расположения щупа относительно камеры при проведении полной калибровки по оси X, Y.

5. Расстояние от камеры до щупа по X, мм; расстояние от камеры до щупа по Y, мм.

В данных пунктах задается положение щупа относительно камеры. Параметр влияет на точность установки щупа на контактной площадке. При выставлении неверного значения точка опускания щупа не будет соответствовать отмеченной точке на изображении, что может привести к повреждению компонентов на плате. Поэтому корректировать руками данные пункты не рекомендуется! Значения выставляются автоматически при полной калибровке.

6. Глубина полуопускания щупа, мм.

Параметр задает высоту, на которую поднимается щуп при небольших передвижениях между контактными площадками компонента.

7. Порог сравнения ВАХ.

Параметр имеет значение от 0 (0%, сигнатуры полностью совпадают) до 1 (100%, сигнатуры полностью отличаются). На основе данного параметра система принимает решение о наличии дефектов в каждой

точке тестирования. Если степень различия между сигнатурами тестовой и эталонной плат в текущей точке превышает порог, точка тестирования помечается как содержащая неисправность.

Эта информация используется для построения отчета о результатах тестирования и может вызывать проведение дополнительных измерений в некоторых режимах.

8. Порог обнаружения ВАХ.

Данный параметр используется для принятия решения о наличии электрического контакта в данной точке.

9. Площадь точки в отчете, пикс.

Параметр задает размер изображения компонента в отчете. Так как изображение является квадратным, задается сторона квадрата в пикселях.

10. Доведение щупа, мм.

Определяет расстояние избыточного опускания щупа. Избыточное опускание подпружиненного щупа позволяет создать дополнительное давление, обеспечивающее надежный контакт с тестируемой поверхностью.

Все штатные щупы системы подпружинены, ход пружины 4 мм.

Ставить значение более 4 мм не рекомендуется во избежание повреждения системы и платы.

11. Точки совпадения для выбранной платы, Порог для выбора плат, Порог сравнения плат.

Данные параметры влияют на наложение компонентов эталонной платы на изображение тестовой платы. В случае если система плохо накладывает эталон либо отказывается его распознавать, значения данных параметров необходимо уменьшить.

12. Режим многократного контактирования.

В случае отсутствия электрического контакта в точке тестирования данный режим позволяет произвести несколько дополнительных измерений с повторным опусканием щупа. Это позволяет улучшить качество тестирования загрязненных плат или плат, покрытых тонким слоем лака или оксидным слоем, а также в случае ошибок при переносе точек тестирования эталонной платы на тестовую.

13. Кол-во попыток контактирования.

Задает количество дополнительных измерений с повторным опусканием щупа в случае отсутствия электрического контакта при выполнении основного измерения.

14. Размер области поиска, мм.

Параметр задает радиус поиска проводящей области в плоскости платы в случае отсутствия электрического контакта в отмеченной точке.

15. Определение динамических ВАХ.

Включает автоматическое определение и измерение динамических сигнатур на исследуемых точках. Недоступно на данный момент.

16. Цвет прицела.

Открывает окно с выбором цвета прицела (Рисунок 6).

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ ЕУЕРОІМТ РІО

跑 Выбор цвета	×
Основные цвета	
Пользовательские цвета	Тон: 120 🖨 Красный: 0 🜲
	Нас: 255 🜩 Зелёный: 255 🜩
	Ярк: 255 🜩 Синий: 0 🜩
Добавить к пользовательским цветам	HTML: #00ff00
	ОК Отмена

Рисунок 6. Выбор цвета прицела ПО EyePoint P10.

9.1.2. Вкладка «Выбор компонентов»

В данной вкладке (Рисунок 7) можно выбрать типы корпусов компонентов, которые должны автоматически распознаваться на изображении платы.

• Настройки				?	×
Общие настройки	Выбор компоненто	в Настройки измерителя ВАХ	Управление подсветкой	Наст	
☑ SOT323		☑ SOT523			
☑ SOT23-5		☑ SOT323-5			
🗹 SOT23-6		✓ SOT363			
🗹 SOT343		☑ SOT143			
☑ SOT723		SMA			
SMB		2-SMD			
SOD110		SOD323F			
🗹 SOD523			L		
SMD0402_R			L		
SMD0603_R					
SMD0805_CL					
SMD1210_C		SMD1206 B			
SMD1206_C					
☑ LQFP0.65 SSOP					
LQFP0.4					
LQFP0.8		∠] LQFPU.5 TF:	50P		
	Выделить все		Снять все		
Частройки по умолчан	ию Применить	Сохранить настройки в файл	ткрыть настройки из файла	Отме	на

Рисунок 7. Вкладка «Выбор компонентов» окна настройки ПО EyePoint P10.

9.1.3. Описание настроек вкладки «Настройки измерителя BAX»

Настройки							?	×
Общие настройки	Выбор ко	мпонентов	Настройки изме	рителя ВАХ	Управление по	одсветкой	Had	π¶₽
Максимальное нап	ряжение, В					5.0	l	\sim
Частота пробного с	жгнала, Гц					10	00.0	\sim
Максимальный ток	, MÁ					10.	53	*
Чувствительность г	по току					Ни	зкая	\sim
Количество точек с	егмента					100)	*
Полное количество	точек					400)	*
	1.2 B	0.025 мА	0.25 мА	2.5 м	A			
Сопротивление	локоограни	Высок	ад Гредн	aa	Низкая			
	1.2 B	0.025 мА	0.25 мА	2.5 м	A			
	3.3 B	0.07 мA	0.7 мА	7 мА				
	5 B	0.1 мА	1 мА	10 m/	4			
	12 B	0.25 мА	2.5 мА	25 м/	4			

Рисунок 8. Вкладка «Настройки измерителя ВАХ» окна настройки ПО EyePoint P10.

- Максимальное напряжение, В задает амплитуду напряжения пробного гармонического сигнала. Может принимать значения 1.2, 3.3, 5, 12 В.
- Частота пробного сигнала, Гц задает частоту пробного сигнала равным одному из доступных значений: 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц. При частотах выше 1 кГц может наблюдаться большая погрешность измерений.

- Максимальный ток, мА задается автоматически после выбора чувствительности по току.
- Чувствительность по току определяет чувствительность и ограничивает максимальную силу тока путем выбора токоограничивающего резистора из фиксированного набора. Максимальная сила тока рассчитывается по закону Ома. Доступны токоограничивающие резисторы трех номиналов: высокая точность (47,5 кОм), средняя (4,75 кОм) и низкая (475 Ом).
- Пункты «Количество точек сегмента» и «Полное количество точек» определяют разрешение сигнатуры.

Наиболее универсальным является следующий набор настроек:

- Максимальное напряжение: 12 В,
- Частота пробного сигнала: 100 Гц,
- Чувствительность по току: средняя.

9.1.4. Вкладка «Управление подсветкой»

Настройки, расположенные в данной вкладке, позволяют настроить яркость основной подсветки рабочей зоны и дополнительной подсветки щупа (Рисунок 9).

					?	×
Общие настройки Вы	бор компонентов	Настройки	и измерителя ВАХ	Управление подсветкой	Наст	
Основная информация						
СОМ порт	com:\\.\COM7		Аппаратная версия	1.0.0		
Производитель	EPC MSU		Версия прошивки	1.0.2		
Наименование продукта	EyePoint P10 M	ot] Версия загрузчика	1.0.0		
Контроллер	P10MB		Серийный номер	1		
Настройки освещения						
Яркость подсветки на и	100 🖨				_	
			A THE ADDRESS TO A CREEK	1 Ha IIIIna 2		
_			овнолючить подсветк			
Яркость основного осв	ещения 80 🖨					
		🗹 Включить	/выключить основное	освещение ?		

Рисунок 9. Вкладка «Управление подсветкой» окна настройки ПО EyePoint P10.

Основная информация

Указана информация о контроллере подсветки.

СОМ-порт – порт, к которому подключен контроллер, управляющий подсветкой. Если при запуске ПО возникают ошибки, связанные с открытием контроллера подсветки (P10MB), стоит убедиться в том, что СОМпорт, заданный в настройках, совпадает с СОМ-портом в диспетчере задач Windows.

Производитель – наименование производителя контроллера.

Наименование продукта – название контроллера подсветки.

Контроллер – тип контроллера подсветки, который используется в приборе EyePoint P10.

Аппаратная версия – номер аппаратной версии контроллера подсветки прибора EyePoint P10.

Версия прошивки – версия прошивки контроллера подсветки прибора EyePoint P10.

Версия загрузчика – указана версия используемого загрузчика прошивки.

Серийный номер – указан серийный номер контроллера подсветки.

Настройки освещения

Полезны для улучшения качества сканирования и дальнейшего распознавания компонентов на печатных платах. С помощью данных настроек можно подобрать подходящее для конкретной платы освещение и избежать засвета компонентов или, наоборот, недостаточной освещенности.

1) Яркость подсветки на щупе:

Подсветка щупа используется в процессе полной калибровки. На всех остальных этапах работы устройства подсветка щупа будет выключена. Чекбокс позволяет включить подсветку щупа для ее настройки. При закрытии окна настроек подсветка щупа будет автоматически выключена.

2) Яркость основного освещения:

Основное освещение должно быть включено на всех этапах работы устройства. Данный чекбокс позволяет временно отключить основное освещение (например, для настройки подсветки щупа). При закрытии окна настроек основное освещение будет автоматически включено.

	Выбор компоненто	из Настройки из	мерителя ВАХ	9правлен	ие подсветкой	Настройки ка	меры	•
Γ	Основная информация	i						_
	ID модели камеры 23	.0		Серийный ном	1348010329.	0		
	Настройки камеры							
	Высота кадра, пикс		972	* *				_
	Ширина кадра, пикс		1296	* *				_
1	Экспозиция, мкс		98988	÷				_
	Усиление, дБ		0.00	÷				
	Коэффициент красног	о цвета в балансе б	елого 1.56	-				_
	Коэффициент зеленог	о цвета в балансе б	елого 1.00	•				_
	Коэффициент синего L	цвета в балансе бел	ого 1.33	-				_

9.1.5. Вкладка «Настройки камеры»

Рисунок 10. Вкладка «Настройка камеры» окна настройки ПО EyePoint P10.

Основная информация

ID модели камеры – указан номер модели камеры;

Серийный номер – указан серийный номер камеры.

Настройки камеры

Высота кадра, пикс и ширина кадра, пикс – размер кадра в пикселях;

Экспозиция, мкс - задается значение экспозиции в микросекундах;

Усиление, дБ – задается значение усиления кадра в децибелах;

Коэффициенты красного/зеленого/синего цвета в балансе белого – позволяют скорректировать ошибки цветопередачи камеры. То есть сделать так, чтобы белый цвет на изображениях был именно белым и не содержал оттенков какого-либо конкретного цвета.

10. КАЛИБРОВКА

Программное обеспечение EyePoint P10 позволяет провести три вида калибровки:

- 1. Калибровка щупа;
- 2. Полная калибровка;
- 3. Быстрая калибровка.

Внимание!

Перед проведением калибровки проверьте, что к плате подключен «общий» провод измерителя при помощи зажима «крокодил» либо другого зажима в зависимости от платы. Если в ходе калибровки между щупом и общим проводом не будет электрического контакта, система не сможет определить момент касания щупа проводящей поверхности, что может привести как к программным ошибкам, так и к повреждению платы и/или щупа.

10.1. Калибровка нового щупа

Калибровка нового щупа выполняется всегда после смены щупа до проведения полной и быстрой калибровок. Проводится на калибровочной плате «Calibration 2.0», входящей в комплект поставки.

Для выполнения калибровки нового щупа:

1. Установите в рабочую зону прибора калибровочную плату «Calibration 2.0» в соответствии с главой 7.

- 2. Убедитесь, что заземляющий провод подключен к плате.
- 3. Найдите центр металлического квадрата на калибровочной плате «Calibration 2.0»
- 4. Контролируя выбор в окне видеокамеры, «Укажите» на центр металлического квадрата.
- 5. Запустите процесс калибровки щупа, выбрав в главном меню программы «Инструменты» –> «Калибровка нового щупа» (Рисунок 11).
- 6. Убедитесь, что общий провод измерителя подключен к тестовой плате. Если общий провод не подключен, на данном этапе Вы ещё можете безопасно его подключить. После того, как провод будет подключен, подтвердите это во всплывающем окне. После этого начнётся процедура калибровки, и производить манипуляции в рабочей области будет нельзя. Дождитесь завершения операции.

Рисунок 11. Внешний вид окна ПО EyePoint P10 при проведении калибровки нового щупа.

10.2. Полная калибровка

Режим полной калибровки подбирает координаты X, Y расположения щупа относительно камеры, а также определяет высоту установленного щупа. Проводится на калибровочной плате «Calibration 2.0», входящей в комплект поставки.

Полная калибровка выполняется в следующих ситуациях:

- Первое включение системы в случае, если она не использовалась длительное время или перед включением производилась её транспортировка;
- Точки касания щупа с платой перестали соответствовать точкам на изображении платы;
- Щуп зацепился за высокий компонент при перемещении;
- После замены щупа;
- После сброса настроек к заводским.
- После обновления ПО.

Предупреждение

Перед проведением полной калибровки убедитесь, что плата установлена в соответствии с пунктом 8 данной инструкции.

Для проведения полной калибровки:

1. Перейдите на вкладку «Калибровка» главного окна программы (Рисунок 12).

Рисунок 12. Внешний вид вкладки «Калибровка» главного окна ПО EyePoint P10.

- Найдите центр металлического квадрата на калибровочной плате «Calibration 2.0», для этого уменьшите масштаб рабочей зоны и пощелкайте по ней в разных местах левой кнопкой мыши. Камера будет следовать за щелчками и отображать полученные снимки в рабочей зоне.
- 3. Контролируя выбор в окне изображения камеры, «укажите» на центр металлического квадрата в рабочей области (Рисунок 13).
- 4. Запустите процесс калибровки, нажав кнопку «Полная калибровка» в правой части экрана.

- 5. Убедитесь, что общий провод измерителя подключен к плате. Если общий провод не подключен, на данном этапе его ещё можно безопасно подключить. После того, как провод будет подключен, подтвердите это во всплывающем окне. После этого начнётся процедура калибровки, и производить манипуляции в рабочей области будет нельзя.
- 6. Получаемое в ходе процесса калибровки изображение может быть мутным, смазанным, не идеально сшитым.
- 7. Дождитесь завершения полной калибровки. Это может занять несколько минут. В случае успешного завершения калибровки в информационном блоке появится сообщение «Full calibration completed successfully».

После проведения полной калибровки необходимо провести быструю калибровку.

Рисунок 13. Внешний вид окна ПО EyePoint P10 при проведении полной калибровки.

10.3. Быстрая калибровка

Быстрая калибровка выполняется при установке платы нового типа в рабочую область. В ходе процесса быстрой калибровки определяется фактическая высота уровня платы (поверхности, на которой находятся точки тестирования).

Предупреждение

Перед проведением полной калибровки убедитесь, что плата установлена в соответствии с пунктом 8 данной инструкции.

Для выполнения быстрой калибровки:

- 1. Перейдите на вкладку «Калибровка» главного окна программы.
- «Укажите» на проводящую область в плоскости платы, например, на контактную площадку микросхемы. Поверхность в указанной точке не должна возвышаться над уровнем платы. Использование ножек микросхем или металлических поверхностей SMD-компонентов в качестве опорных точек для быстрой калибровки может привести к ошибкам. Также желательно выбрать область, содержащую контрастные объекты в плоскости платы (шелкографию, наклейки...) – это повысит точность предварительного определения высоты оптическими методами.
- 3. Нажмите кнопку «Быстрая калибровка» в правой части экрана вкладки «Калибровка».
- 4. Получаемое в ходе процесса изображение может быть мутным, смазанным, не идеально сшитым.
- Дождитесь окончания быстрой калибровки (может занять около минуты). В случае успешного завершения быстрой калибровки: в информационном блоке появится сообщение «Quick calibration competed successfully» (Рисунок 14).

Рисунок 14. Внешний вид окна ПО EyePoint P10 при окончании быстрой калибровки.

11. СКАНИРОВАНИЕ

Перед сканированием система должна быть откалибрована.

Процесс сканирования позволяет получить изображение платы в высоком разрешении. Это изображение будет использоваться для:

- Автоматического распознавания компонентов на плате.
- Ручной установки точек тестирования.
- Автоматического сопоставления точек тестирования между тестовой и эталонной платами.

- Указания точек в режиме ручного тестирования.
- Построения отчетов по результатам тестирования.

После этого можно переходить к выбору области платы, которую нужно отсканировать.

11.1. Выбор области

В рабочей зоне вкладки «Калибровка» главного окна программы выделите область, которую необходимо отсканировать (всю плату или какую-то ее часть), используя для этого правую кнопку мыши.

Для удобства можно изменять масштаб изображения колесиком мыши.

Выделенная область обозначится рамкой (Рисунок 15).

Рисунок 15. Выбор области платы для дальнейшего сканирования ПО EyePoint P10.

11.2. Проведение сканирования

Внимание!

В процессе сканирования крышка установки должна быть закрыта!

Для проведения сканирования выполните действия:

1. Перейдите во вкладку «Сканирование» главного окна программы (Рисунок 16). Данная вкладка станет доступна после выбора области (пункт 11.1).

Рисунок 16. Внешний вид вкладки «Сканирование» ПО EyePoint P10.

2. Нажмите кнопку «Сканировать» в правой части окна.

3. Дождитесь конца сканирования. В информационном блоке появится сообщение «Image scanning completed».

Полученная картинка должна вмещать интересующую оператора площадь, выбранную в п.11.1. Примерный вид такого результата показан ниже (Рисунок 17).

Рисунок 17. Отсканированная область с платой ПО EyePoint P10.

- Если на шаге 11.1 была выбрана вся плата, но в результате сканирования она отображается не полностью, выполните следующие действия:
 - 1) Убедитесь, что плата находится в рабочей зоне, указанной на Рисунке 1 Главы 4. При необходимости переместите плату в
центральную часть рабочей зоны (конструкция системы не позволяет подвести камеру вплотную к крышке, задней стенке или направляющим).

- 2) Выделите новую область для сканирования большего размера.
- 3) Повторите процедуру сканирования.
- 5. Если на полученном изображении явно видны дефекты сшивки кадров, требуется повторить процедуру быстрой калибровки, а затем еще раз выполнить сканирование.

Внимание!

После удачного завершения сканирования перемещение платы не допускается!

11.3. Распознавание компонентов

После проведения сканирования системе нужно задать точки тестирования.

Точки тестирования устанавливаются на изображении платы, а их координаты на изображении автоматически пересчитываются в координаты механической системы.

Для удобства работы точки тестирования объединяются в «элементы». Каждая точка тестирования должна относиться к одному из элементов. Один элемент может содержать произвольное количество точек тестирования.

11.3.1. Автоматический способ распознавания компонентов

В данном режиме производится автоматический поиск компонентов со стандартными корпусами по изображению платы. При нахождении компонента производится автоматическое наложение точек тестирования в соответствии с их стандартными позициями для данного типа корпусов.

Для запуска данного способа распознавания выполните шаги:

1. Нажмите кнопку «Найти элементы» в правой части окна вкладки «Сканирование».

Система перейдет к поиску эталона для текущей платы для наложения на нее компонентов.

- 2. Для того чтобы пропустить поиск эталона, нажмите кнопку «Пропустить поиск эталона». В этом случае система не будет искать плату в базе, а сразу перейдет к распознаванию компонентов.
- 3. Дождитесь окончания процедуры распознавания.

После завершения процедуры могут появиться неверно распознанные или нераспознанные элементы (Рисунок 18). На результат влияют настройки, описанные в главе 10 данной инструкции.

- 4. Удалите неверно распознанные элементы. Для этого выделите их левой кнопкой мыши и нажмите на клавиатуре Delete.
- 5. Нераспознанные элементы можно добавить двумя способами:
 - 1) Полуавтоматическим способом;
 - 2) Ручным добавлением компонентов.

Рисунок 18. Распознанные элементы на плате ПО EyePoint P10.

11.3.2. Полуавтоматический способ распознавания компонентов

Для запуска полуавтоматического способа распознавания компонентов необходимо:

- 1. Выделить область, где располагается требуемый элемент, затем нажать на неё правой кнопкой.
- 2. В появившемся меню выбрать пункт «Распознать один элемент в выделенной области» либо пункт «Распознать элементы в выделенной области». Внешний вид меню показан на Рисунке 19.
- 3. Дождаться окончания распознавания. Пример успешно распознанного элемента приведен на Рисунке 20.

Рисунок 19. Полуавтоматическое распознавание элементов ПО EyePoint P10.

Рисунок 20. Пример успешно распознанного элемента ПО EyePoint P10.

 Если распознавание элемента прошло неудачно, то выделите большую область и повторите процедуру.

Поиск одного элемента даёт системе больше информации и поэтому работает более надёжно. Элементы, которые распознаются плохо, имеет смысл распознавать именно с помощью функции поиска одного элемента.

11.3.3. Ручное добавление элемента

Для ручного добавления элемента необходимо:

- 1. Нажать кнопку «Ручной инструмент» в правой части окна вкладки «Сканирование».
- 2. Используя правую кнопку мыши выделить область, где располагается элемент.
- При помощи левой кнопки мыши добавить необходимые точки на контактные площадки компонента. Неправильно поставленную точку можно удалить нажатием правой клавишей мыши.
- 4. Нажать кнопку «Добавить».
- 5. В появившемся окне при необходимости задать имя компонента и нажать «ОК» для сохранения изменений.
- 6. Повторить операцию добавления для всех необходимых компонентов.
- 7. Выйти из режима повторным нажатием кнопки «Ручной инструмент».

Пример добавления нового компонента показан на Рисунке 21.

Рисунок 21. Ручное добавление компонента на плату ПО EyePoint P10.

11.4. Редактирование и удаление элемента эталонной платы

Для редактирования элемента необходимо:

- 1. Выделить нужный элемент в рабочей зоне вкладки «Сканирование» используя левую кнопку мыши.
- Нажать на него правой кнопкой мыши для вызова контекстного меню и выбрать один из пунктов в зависимости от задачи (Рисунок 22).

Рисунок 22. Меню редактирования элемента ПО EyePoint P10.

- 3. При выборе пункта «Переименовать элемент» в открывшемся окне внести изменения в название элемента и сохранить их, нажав на кнопку «ОК».
- 4. При выборе пункта «Редактировать расположение ножек» передвинуть необходимые точки на контактные площадки компонента и нажать кнопку «Добавить». Если изменения вносятся в эталонную плату с уже имеющимися ВАХ, появится диалоговое окно с предупреждением (Рисунок 23).

Рисунок 23. Диалоговое окно ПО EyePoint P10 при редактировании ножек эталонной платы с имеющимися BAX.

Нужно выбрать ответ в зависимости от вашей ситуации: если вам необходимо оставить все ВАХ – нажмите «ОК», если же после изменений вы хотели бы перетестировать компонент – нажмите «Нет». В случае выбора последнего варианта, перейдите на вкладку «Тестирование» и запустите процесс снятия ВАХ ножек исправленного компонента.

- При выборе пункта «Удалить 1 элемент» выбранный компонент удалится. Также для удаления предварительно выделенных одного или нескольких компонентов можно воспользоваться клавишей Delete.
- При выборе пункта «Вырезать 1 элемент как правильный» выделенный элемент удалится, но при этом система в дальнейшей работе будет считать подобные элементы правильными (часть машинного обучения).

 При выборе пункта «Вырезать 1 элемент как неправильный выделенный элемент удалится, но при этом система в дальнейшей работе будет считать подобные элементы неправильными (часть машинного обучения).

12. СНЯТИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК ПЛАТЫ

После завершения процедуры сканирования платы и распознавания компонентов, описанных в главе 11, можно приступать к снятию вольтамперных характеристик компонентов. Снятие ВАХ происходит во время процедуры тестирования.

Для выполнения тестирования нужно:

- 1. Задайте настройки измерителя ВАХ, описанные в главе 9.1.3.
- 2. Перейти во вкладку «Тестирование» главного окна (вкладка станет доступна после процедуры сканирования).
- 3. Запустите процесс снятия ВАХ нажатием на кнопку «Тестировать».
- Во время тестирования в правой части окна программы отображаются ВАХ каждой точки в реальном времени, а в нижней части окна процент готовности (Рисунок 24).
- 4. Дождитесь окончания тестирования. В информационном блоке появится сообщение «Board tested succesfully».
- 5. По окончании тестирования система предложит присвоить название плате. При необходимости внесите в него изменения и нажмите «ОК». Таким образом, эталонная плата сохранится в папку sample_pcb программы EyePoint P10, а тестовая палата – в папку tests_pcb.
- 6. Для получения отчета нажмите кнопку «Сгенерировать отчет».

Более подробную информацию об отчете можно прочитать в главе 14 данной Инструкции.

Рисунок 24. Внешний вид окна программы EyePoint P10 в процессе тестирования эталонной платы.

Если в ходе тестирования выяснилось, что некоторые точки были плохо расставлены и в них отсутствуют ВАХ – необходимо отредактировать их расположение, выполнив пункт 11.3.2 или 11.3.3. Кроме того, можно вручную заменить ВАХ на другую, более подробную информацию можно найти в главе 13.4.

13. ВЫЯВЛЕНИЕ НЕИСПРАВНЫХ КОМПОНЕНТОВ НА ТЕСТИРУЕМОЙ ПЛАТЕ

Внимание!

У вас должны быть сняты и сохранены в файл ВАХ эталонной платы.

Для выявления неисправных компонентов на плате необходимо выполнить шаги:

13.1. Распознавание эталона

13.1.1. Автоматическое распознавание эталона

Система EyePoint P10 умеет сама находить подходящий эталон из папки **sample_pcb**.

Внимание!

Чем больше папок с эталонами в папке **sample_pcb**, тем дольше система будет искать среди них нужный эталон.

Для автоматического наложения эталона необходимо:

- 1. Во вкладке «Сканирование» нажать кнопку «Найти элементы».
- 2. Дождаться окончания процесса.

В правой части программы появится имя платы, которую система выбрала эталонной среди остальных плат, лежащих в папке.

Выбор эталонной платы и точность ее наложения зависят от настроек, описанных в 11 пункте раздела 9.1.1.

 По завершении процесса наложения эталона, все контакты электронных компонентов выделяются контрастными фиолетовыми точками (Рисунок 25).

Рисунок 25. Результат автоматического наложения эталона на тестовую плату в ПО EyePoint P10.

4. После чего необходимо проверить качество наложения.

Точки должны располагаться аналогично эталону, в случае если это не так, необходимо проверить наличие наклеек и прочих маркировок на тестовой плате и на эталоне. В идеале они не должны быть разными.

13.1.2. Ручной выбор эталона

Существует два способа ручного выбора эталона:

1. Указать вручную файл эталонной платы в папке. Для этого:

- 1.1. На вкладке «Сканирование» нажмите кнопку «Выбрать эталон».
- 1.2. Укажите путь к файлу эталонной платы.
- На изображении проверяемой платы в рабочей зоне вкладки «Сканирование» отобразятся наложенные точки эталона (Рисунок 26).

Рисунок 26. Результат наложение эталона на тестовую плату в ПО EyePoint P10.

2. Подставить изображение эталона с наложенными точками в рабочую зону вкладки «Сканирование».

Предупреждение

Данный способ является ненадежным. Место, где стоит проверяемая плата, должно в точности совпадать с местом, где стояла эталонная плата во время сканирования. Даже небольшой сдвиг проверяемой платы относительно расположения эталона может привести к ошибкам попадания щупа по компонентам, что снизит вероятность исправления ошибок на плате.

- 2.1. В данном случае можно предварительно не сканировать проверяемую плату вовсе.
- 2.2. На вкладке «Сканирование» нажмите кнопку «Выбрать плату».
- 2.3. Укажите путь к плате эталона.
- 2.4. В рабочей зоне вкладки «Сканирование» покажется изображение платы эталона с наложенными на него точками и водяным знаком «Reference» (Рисунок 27).

Таким образом, на этапе тестирования вы будете видеть фотографию эталонной платы, а не платы, которую необходимо проверить.

Рисунок 27. Подставленное изображение эталона с наложенными точками ПО EyePoin P10.

13.2. Корректировка наложения эталона

После выбора эталона необходимо проверить корректность наложения точек эталона на тестируемую плату.

В случае если эталон наложился на тестовую плату со смещением, его необходимо переместить. Для этого во вкладке «Сканирование» нажмите кнопку «Ручное выравнивание», после чего откроется окно (Рисунок 28):

🕺 Ручное выравнивание 🛛 🗙
Смещение по X, пикс 0,6 主
Смещение по Ү, пикс -0,2
Вращение, ° 0,0 🚖
Сохранить Посмотреть Отмена

Рисунок 28. Окно «Ручное выравнивание» ПО EyePoint P10.

Укажите необходимые смещения по осям X, Y в пикселях и поворот платы в градусах. Для предварительного просмотра смещения нажмите кнопку «Посмотреть». Кнопка «Сохранить» зафиксирует подобранное смещение.

13.3. Тестирование платы

Перейдите во вкладку «Тестирование» и нажмите кнопку «Тестировать» для запуска процесса.

В ходе тестирования программа сравнит полученные ВАХ проверяемой платы с аналогичными ВАХ эталонной платы, учитывая заданный в настройках порог совпадения (см. пункт 7 раздела 9.1.1), и отобразит процесс в окне программы (Рисунок 29).

Рисунок 29. Ход тестирования ПО EyePoint P10.

В правой части окна программы отобразятся вольт-амперные характеристики компонентов в сравнении с эталоном: график синего цвета будет соответствовать ВАХ эталонной платы, а красного - ВАХ текущей, проверяемой платы.

Кроме того, в левой части окна программы по ходу проведения тестирования будут перекрашиваться точки компонентов: все совпавшие с эталоном точки отметятся зеленым цветом, а все не совпавшие – оранжевым.

По окончании тестирования программа попросит указать название платы и сохранит результаты в папке **test_pcb**, расположенной в корне папки программы. Также будет сформирован «Отчет о тестировании», в котором отразятся различия в вольт-амперных характеристиках в каждой исследуемой точке по сравнению с эталонной платой.

В случае если порог совпадения ВАХ был слишком высок и его необходимо уменьшить, перейдите в настройки и поменяйте значение в пункте «Порог сравнения ВАХ». Затем на вкладке «Тестирование» повторно нажмите кнопку «Сгенерировать отчет».

Также можно перепроверить некоторые точки в ручном режиме. Как это сделать описано в разделе 13.5.

13.4. Замена некорректных ВАХ тестовой платы

В процессе тестирования платы могут возникать различные ошибки, например:

- непопадания системы по компонентам вследствие установки их со смещением или повреждения щупа;
- динамические ВАХ;
- установленные аналоги компонентов;
- отсутствие компонентов в плате;
- отсутствие ВАХ в требуемой точке вследствие лакировки платы или большого окисла или грязи.

Для корректировки данных проблем имеется инструмент замены ВАХ точек. Для его вызова необходимо во вкладке «Тестирование» выполнить шаги:

 Выбрать «корректную» ВАХ, которую желаете установить в некорректную точку. Для этого либо вручную кликните вокруг точки в поисках желаемой ВАХ, либо, если такая не нашлась, подберите подходящее значение ВАХ соседней точки.

- 2) Нажать кнопку «Заменить ВАХ на отображенную».
- Выбрать «некорректную» точку, куда вы хотите установить найденную «корректную» ВАХ.
- Проверить корректность замены в появившемся диалоговом окне (Рисунок 30).

Рисунок 30. Диалоговое окно замены ВАХ ПО EyePoint P10.

- 5) Нажать «Да», если результат замены ВАХ вам подходит. Далее, если требуется сохранить плату как новую, изменить в открывшемся окне название платы и нажать «ОК».
- Если результат замены не подходит нажать «Нет» и повторить пункты 1-4.

После замены всех необходимых точек необходимо повторно сгенерировать отчет.

13.5. Ручное тестирование

Для ручного тестирования платы необходимо перейти во вкладку «Тестирование», нажать кнопку «Ручной тест» и левой кнопкой мыши указать на интересующую точку. В окне отображения графиков ВАХ

отобразится ВАХ, измеряемая в реальном времени, которую можно сохранить в .csv файл. Для этого нужно нажать правой кнопкой мыши на окно графика и выбрать пункт «Экспортировать ВАХ в файл» (Рисунок 31). Для перехода на другую точку щелкните по ней левой кнопкой мыши.

Рисунок 31. Пункты контекстного меню ручного тестирования ПО EyePoint P10.

14. ОТЧЕТ О ТЕСТИРОВАНИИ

14.1. Расположение отчетов

Отчет о тестировании генерируется в файл формата **html**, что позволяет открывать его на любом устройстве.

- Все отчеты РСВ-плат хранятся в папке sample_pcb в корне папки с программой;
- Все отчеты тестируемых плат РСВ-компонентов хранятся в папке **test_pcb** в корне папки с программой.

14.2. Структура папки отчета

В папке с отчетом хранятся следующие файлы и папки:

 Папка Static. В ней хранится изображение всей платы с точками тестирования, изображение каждой отдельной точки, а также картинка с ВАХ каждой точки;

- Изображение самой платы без точек тестирования в высоком разрешении;
- Файл elements.json файл с координатами каждой точки тестирования и соответствующими параметрами измеренной ВАХ;
- full_img.html открывающийся браузером файл, в котором в интерактивном режиме отображается плата со всеми тестируемыми точками. По наведению мыши на любую тестируемую точку в левом верхнем углу экрана отобразится её ВАХ. В эталоне на картинке будут все тестовые точки, а в тестовой плате будут только неисправные.
- Файл report_full.html файл полного отчета о тестировании платы, который включает в себя все точки на плате с соответствующими ВАХ. Для эталона данный отчет является единственным. Для тестовой платы данный отчет является вспомогательным.
- Файл report.html файл отчета только тестовой платы, в котором отображаются только точки, чьи ВАХ не совпали с эталонной платой.
- Файл Logfile.log файл с логами работы системы при тестировании данной платы.

14.3. Внешний вид отчета эталона

Внешний вид отчета эталона показан на Рисунке 32.

Рисунок 32. Внешний вид отчета эталона ПО EyePoint P10.

В верхней части отчета отображается следующая информация:

- количество элементов;
- количество точек тестирования на плате;
- затраченное время на тестирование;
- дата проведения тестирования;
- название платы;
- дополнительная справочная информация о системе.

По нажатию на любую из точек тестирования на картинке, страница автоматически пролистнётся до данной точки.

По наведению мышкой на любую фотографию отдельного компонента в отчете появится всплывающее окно с указанием положения выбранной точки компонента на плате.

По нажатию на кнопку image inspect в новом окне (вкладке) откроется увеличенная фотография платы с отображением всех точек тестирования на данной плате. По наведению мышкой на любую из точек в левом верхнем углу экрана отобразиться её ВАХ.

14.4. Внешний вид отчета тестовой платы

Внешний вид отчета тестовой платы представлен на Рисунке 33.

Основное окно отчета тестовой платы показывает сразу только точки, которые не совпали с эталоном.

Структура отчета тестовой платы аналогична отчету эталона, за исключением некоторых дополнительных полей:

- Кнопка View full report открывает в новом окне (вкладке) полный отчет всей тестовой платы с отображением всех точек тестирования, как исправных так и не исправных.
- Гистограмма распределения несовпадений, где по левую сторону от красной вертикальной линии находятся все точки, которые совпали с эталоном, а по правую сторону – не совпали. Сама красная вертикальная линия располагается на значении указанном в настройках в пункте «Порог сравнения ВАХ».
- По нажатию на кнопку image inspect в новом окне (вкладке) откроется фотография платы только с не совпавшими с эталоном точками.

Рисунок 33. Внешний вид отчета тестовой платы ПО EyePoint P10.

15. ВЫКЛЮЧЕНИЕ

По завершении работы:

- 1. В меню «Файл» нажмите кнопку «Выход» либо крестик в правом верхнем углу окна программы.
- 2. Отключите питание установки.
- 3. Выключите управляющий компьютер.

16. ПОЛЕЗНАЯ ИНФОРМАЦИЯ ПРИ РАБОТЕ С СИСТЕ-МОЙ

16.1. Как правильно расставлять точки для тестирования компонентов

При добавлении компонентов на эталонную плату очень важно правильно расставить все тестовые точки. От того как они расставлены будет зависеть, сможет ли система измерить ВАХ в данной точке эталона и тестируемой платы.

При расставлении точек тестирования на микросхемы, точки необходимо располагать уже после самой ножки микросхемы: между концом контактной площадки и ножкой микросхемы, если это позволяет посадочная площадка самой микросхемы. Такое расположение позволит определить плохо пропаянные контакты.

Примеры корректного расставления точек тестирования на компонентах приведены на Рисунке 34.

Рисунок 34. Правильное расставление точек тестирования на микросхеме.

При расстановке точек тестирования на пассивные компоненты применяется аналогичная тактика как с микросхемами: точки тестирования необходимо расставлять между концом ножки компонента и концом контактной площадки (Рисунок 35). В крайних случаях, когда контактная площадка компонента по длине равна длине компонента, точка ставится максимально близко к центру контакта компонента.

Рисунок 35. Правильное расставление точек тестирования на пассивном компоненте.

При расстановке точек тестирования на «безножных» корпусах типа QFN точки необходимо располагать как можно дальше от корпуса, во избежание попадания щупа в корпус компонента (Рисунок 36).

Рисунок 36. Правильное расставление точек тестирования на «безножных» компонентах типа QFN.

Примечание

Данный метод не дает 100% гарантии попадания в ножку компонента, т.к. контактные площадки для монтажа подобных микросхем бывают крайне короткими и в таком случае система просто не сможет в них попасть из-за имеющегося радиуса щупа и высоты корпуса компонента.

16.2. Как лучше добавлять компоненты на эталонную плату

Лучшим вариантом добавления компонентов на эталонную плату является добавление каждого компонента в отдельности при помощи автоматического, полуавтоматического и ручного режимов.

Плюсы данного способа:

- возможно определить, сколько реальных компонентов было добавлено на плату и будет протестировано;
- большее удобство при редактировании эталонной платы и отдельных компонентов;
- возможность подписать каждый компонент его собственным именем.

Минусы данного способа:

- увеличивает время на создание эталона;
- увеличивает время при тестировании эталона.

16.3. Подключение «общего» провода к измеряемой плате

В случае если на плате имеется несколько раздельных земель, то их необходимо объединить в одну и после этого подключить «общий» провод с зажимом типа «крокодил» в точку объединения земель.

16.4. Виды вольт-амперных характеристик (ВАХ) различных компонентов и их сочетаний

Для резисторов:

 ВАХ резистора выглядит как наклонная линия в направлении справа налево (Рисунок 37).

Рисунок 37. График ВАХ резистора.

• Наклон кривой, на одних и тех же параметрах пробного сигнала, зависит от номинала измеряемого резистора.

- С повышением ограничения по току тестового сигнала, ВАХ одного и того же резистора будет приближаться к горизонтали и наоборот, при уменьшении ограничения по току – к вертикали.
- С повышением частоты пробного сигнала, 400 кГц и выше, ВАХ резистора будет приобретать форму вытянутого эллипса из-за проявления ёмкостных и индуктивных составляющих на высоких частотах.

Для конденсаторов:

• ВАХ конденсатора имеет форму эллипса (Рисунок 38).

Рисунок 38. График ВАХ конденсатора.

- Ширины и высота эллипса, на одних и тех же параметрах пробного сигнала, зависит от номинала измеряемого конденсатора.
- Так же имеется сопротивление конденсатора, которое зависит от частоты пробного сигнала. Для измерений ёмкостей имеется следующая зависимость: чем ниже ёмкость – тем более высокую частоту пробного сигнала необходимо выбрать, и наоборот – чем выше ёмкость, тем более низкую частоту. Например, для измерения ёмкости в 100мкФ необходимо выбрать частоту от 1 до 10Гц, а для ёмкости в 2пФ необходимо выбрать частоту от 6мГц и выше.

Формула расчета сопротивления конденсатора: X=1/FC, где X – сопротивление конденсатора, F – частота пробного сигнала, C – ёмкость конденсатора.

 Если при измерении ёмкости Вы видите короткое замыкание или разрыв – попробуйте изменить частоту пробного сигнала.

Для индуктивностей:

- ВАХ индуктивности выглядит как ВАХ резистора, но только в другую сторону, а в зависимости от частоты может приобретать и форму эллипса.
- Размах эллипса будет зависеть от номинала индуктивности при одних и тех же параметрах пробного сигнала
- Размах эллипса при одном и том же номинале будет зависеть от параметров пробного сигнала

Для полупроводниковых элементов:

• ВАХ полупроводникового элемента (стабилитрона) (Рисунок 39).

Рисунок 39. ВАХ стабилитрона.

 В зависимости от типа полупроводникового элемента ВАХ может иметь как одно плечо, так и два. Положение плеч относительно друг друга зависит от полярности подключения измерительных щупов.

 Размах плеч, их высота и точка перегиба зависят от параметров измеряемого компонента и параметров пробного сигнала. RC – цепочка на BAX (Рисунок 40):

Рисунок 40. RC – цепочка на ВАХ.

Наклон эллипса будет зависеть от номинала резистора в цепи, а его размах от номинала конденсатора и пробного сигнала.

• Соединение конденсатора и диода (Рисунок 41):

Рисунок 41. Соединение конденсатора и диода.

Раскрытие эллипса на конце ВАХ зависит от номинала конденсатора, а точка перегиба ВАХ от напряжения открытия диода (p-n перехода).

• Соединение диода и резистора (Рисунок 42):

Рисунок 42. Соединение диода и резистора.

Наклон ВАХ зависит от номинала резистора, а точка перегиба ВАХ от напряжения открытия диода (p-n перехода).

 При соединении резистора, конденсатора и диода ВАХ будет аналогична пункту 2 данного подраздела, но с учетом номиналов компонентов цепи.

ДЛЯ ЗАМЕТОК

ДЛЯ ЗАМЕТОК

ДЛЯ ЗАМЕТОК

physlab.ru

Общество с ограниченной ответственностью «Центр инженерной физики при МГУ имени М.В. Ломоносова»

Телефон: +7 (499) 343-5624

e-mail: info@physlab.ru